Как рассчитать диагональ: выравнивание величины прямоугольника и расчет

Алан-э-Дейл       13.04.2022 г.

Содержание

Примеры вопросов и задач

Разберём некоторые вопросы, с которыми можно столкнуться при изучении курса математики в школе, и решим несколько простых задач.

Задача 1. Как изменится площадь прямоугольника, если увеличить длину его сторон в три раза?

Решение Обозначим площадь исходной фигуры S0, а площадь четырёхугольника с утроенной длиной сторон — S1. По формуле, рассмотренной ранее, получаем: S0 = ab. Теперь увеличим длину и ширину в 3 раза и запишем: S1= 3 a • 3 b = 9 ab. Сравнивая S0 и S1, становится очевидно, что вторая площадь больше первой в 9 раз.

Вопрос 1. Четырёхугольник с прямыми углами — это квадрат?

Решение Из определения следует, что фигура с прямыми углами является квадратом лишь тогда, когда длины всех его сторон равны. В остальных случаях фигура является прямоугольником.

Задача 2. Диагонали прямоугольника образуют угол 60 градусов. Ширина прямоугольника — 8. Рассчитать, чему равна диагональ.

https://youtube.com/watch?v=m0Q0oaI-JSQ

Решение: Вспомним, что диагонали точкой пересечения разделяются пополам. Таким образом, имеем дело с равнобедренным треугольником с углом при вершине, равным 60°. Так как треугольник равнобедренный, то находящиеся при основании углы тоже будут одинаковы. Путём несложных вычислений получаем, что каждый из них равен 60°. Отсюда следует, что треугольник равносторонний. Ширина, известная нам, является основанием треугольника, следовательно, половина диагонали тоже равна 8, а длина целой диагонали в два раза больше и равна 16.

Вопрос 2. У прямоугольника все стороны равны или нет?

Решение Достаточно вспомнить, что все стороны должны быть равны у квадрата, который является частным случаем прямоугольника. Во всех остальных случаях достаточное условие — это наличие минимум 3 прямых углов. Равенство сторон не является обязательным признаком.

Задача 3. Площадь квадрата известна и равна 289. Найти радиусы вписанной и описанной окружности.

Решение По формулам для квадрата проведём следующие расчёты:

  • Определим, чему равны основные элементы квадрата: a = √ S = √289 = 17, d = a √2 =1 7√2.
  • Подсчитаем, чему равен радиус описанной вокруг четырёхугольника окружности: R = 0,5 d = 8,5√2.
  • Найдём радиус вписанной окружности: r = a / 2 = 17 / 2 = 8,5.

Классификация

Прямоугольник — это частный случай параллелограмма и трапеции . Квадрат является частным случаем прямоугольника.

Традиционная иерархия

Прямоугольник является частным случаем параллелограмма , в котором каждая пара смежных сторон находится перпендикулярно .

Параллелограмм — это особый случай трапеции (известной как трапеция в Северной Америке), в которой обе пары противоположных сторон параллельны и равны по длине .

Трапеция — это выпуклый четырехугольник, у которого есть по крайней мере одна пара параллельных противоположных сторон.

Выпуклый четырехугольник — это

  • Просто : граница не пересекает саму себя.
  • В форме звезды : весь интерьер виден с одной точки, не пересекая края.

Альтернативная иерархия

Де Вильерс определяет прямоугольник в более общем смысле как любой четырехугольник с осями симметрии, проходящими через каждую пару противоположных сторон. Это определение включает как прямоугольные прямоугольники, так и скрещенные прямоугольники. Каждая из них имеет ось симметрии, параллельную и равноудаленной от пары противоположных сторон, а другая — серединный перпендикуляр этих сторон, но в случае скрещенного прямоугольника первая ось не является осью симметрии для обеих сторон. что он делит пополам.

Четырехугольники с двумя осями симметрии, каждая из которых проходит через пару противоположных сторон, относятся к большему классу четырехугольников, по крайней мере, с одной осью симметрии через пару противоположных сторон. Эти четырехугольники состоят из равнобедренных трапеций и скрещенных равнобедренных трапеций (скрещенные четырехугольники с таким же расположением вершин, что и равнобедренные трапеции).

Свойства и линии

Из-за того, что прямоугольник — это параллелограмм, все свойства последнего справедливы и к нему. В первую очередь для него характерно, что противоположные стороны являются параллельными, то есть лежат на непересекающихся прямых. Отсюда следует, что фигуры отличаются друг от друга только размерами двух граней.

К основным свойствам прямоугольника относят:

  • противолежащие стороны имеют равную длину: AB = CD, BC = AD;
  • все углы равны 90 градусов;
  • отрезки, обозначающие ширину и длину, всегда перпендикулярные друг другу: AB ┴ BC, BC ┴ CD, CD ┴ AD, AD ┴ AB;
  • сумма любых двух углов фигуры равняется 180 градусов, соответственно всех четырёх — 360;
  • в четырёхугольном теле можно провести 2 диагонали, длины которых будут совпадать по величине: AB = BC;
  • сумма квадратов диагональных отрезков равняется удвоенной сумме квадратов сторон фигуры: AC2 + BD2 = 2 (AB2 + BC2);
  • построенная диагональ разделяет прямоугольник на 2 одинаковые фигуры — прямоугольные треугольники;
  • точка пересечения прямых линий, соединяющая попарно противоположные углы, является центром фигуры и описанной окружности;
  • диагонали в месте пересечения разделяются на 4 равных отрезка;
  • в многоугольник, у которого длина не равна ширине, вписать окружность нельзя, поэтому её можно построить только для частных случаев прямоугольника.

На свойстве, что сложенные квадраты диагоналей можно найти как сумму квадратов всех его сторон, построено решение многих геометрических задач. Нелишним будет доказательство теоремы. Пусть имеется прямоугольник, у которого линии AC и BD — диагонали. Если изобразить многоугольник на рисунке и построить отрезки, можно увидеть, что каждая диагональ делит фигуру на 2 треугольника: ABC и BDC.

Используя теорему косинусов, можно записать: AC2 = AB2 + BC2 — 2 * AB * BC * cos (ABC); BD2 = CD2 + BC2 — 2 * CD * BC * cos (BCD). После сложения полученных выражений получится запись: AC2 + BD2 = AB2 + BC2 — 2 * AB * BC * cos (ABC) + CD2 + BC2 — 2 * CD * BC * cos (BCD).

Так как по свойству прямоугольной фигуры противоположные стороны равны, уравнение примет вид: AC2 + BD2 = 2AB2 + 2BC2 — 2 * AB * BC * cos (ABC) — 2 * AB * BC * cos (BCD). Учитывая, что сумма двух углов равняется 180, полученное выражение можно переписать так: AC2 + BD 2 = 2 (AB 2 + BC 2). Что и следовало доказать.

Площадь геометрической фигуры

Площадь геометрической фигуры — это число, которое характеризует размер данной фигуры.

Следует уточнить, что речь в данном случае идёт о площади на плоскости. Плоскостью в геометрии называют любую плоскую поверхность, например: лист бумаги, земельный участок, поверхность стола.

Площадь измеряется в квадратных единицах. Под квадратными единицами подразумевают квадраты, стороны которых равны единице. Например, 1 квадратный сантиметр, 1 квадратный метр или 1 квадратный километр.

Измерить площадь какой-нибудь фигуры означает выяснить сколько квадратных единиц содержится в данной фигуре.

Например, площадь следующего прямоугольника равна трём квадратным сантиметрам:

Это потому что в данном прямоугольнике содержится три квадрата, каждый из которых имеет сторону, равную одному сантиметру:

Справа представлен квадрат со стороной 1 см (он в данном случае является квадратной единицей). Если посмотреть сколько раз этот квадрат входит в прямоугольник, представленный слева, то обнаружим, что он входит в него три раза.

Следующий прямоугольник имеет площадь, равную шести квадратным сантиметрам:

Это потому что в данном прямоугольнике содержится шесть квадратов, каждый из которых имеет сторону, равную одному сантиметру:

Допустим, потребовалось измерить площадь следующей комнаты:

Определимся в каких квадратах будем измерять площадь. В данном случае площадь удобно измерить в квадратных метрах:

Итак, наша задача состоит в том, чтобы определить сколько таких квадратов со стороной 1 м содержится в исходной комнате. Заполним этим квадратом всю комнату:

Видим, что квадратный метр содержится в комнате 12 раз. Значит, площадь комнаты составляет 12 квадратных метров.

На что влияет диагональ экрана телевизора?

Диагональ экрана телевизора – важная характеристика, во многом определяющая четкость и качество отображаемого изображения. Однако для того, чтобы выбрать и приобрести оптимальную модель телевизора, недостаточно знать требуемую диагональ устройства. Не менее важны следующие факторы.

Диагональ и разрешение экрана

Разрешение – это параметр, который отражает максимальное число на квадратный дюйм, которое устройство может отображать одновременно. Чем выше разрешение, тем ярче, четче и детальнее будет экран.

Видео высокого разрешения выглядит естественным и ярким. Он лучше запоминает и оставляет исключительно положительные впечатления. Для человека вполне естественно желание увидеть красивую картинку на большом экране. Поэтому на современном рынке существует негласное правило: чем больше диагональ телевизора, тем выше его разрешение. Но это правило соблюдается не всегда, и при желании покупатели могут найти модель телевизора с большой диагональю и низким разрешением.

Диагональ и место установки

К сожалению, большинство наших соотечественников проживают в стандартных квартирах, главный недостаток которых – ограниченная площадь. В тесноте бывает сложно найти подходящее место для большого телевизора. Ведь согласно рекомендациям производителя, для нормальной вентиляции устройства необходимо будет предусмотреть зазор между устройством и другими предметами в несколько сантиметров.

Конечно, когда пространство ограничено, большое панно всегда можно повесить на стену. Однако и здесь возникают некоторые трудности, связанные со строительством стен. Перегородки из гипсокартона просто не выдерживают вес устройства, что со временем может привести к его падению и выходу из строя. Поэтому, прежде чем отправиться в магазин за новой техникой, нужно знать, как определить диагональ телевизора исходя из места его установки.

Диагональ экрана и расстояние просмотра

В старых ЭЛТ-телевизорах существовала формула, по которой идеальным расстоянием от монитора до зрителя считалось расстояние, равное 4-5 диагоналям экрана. Появление инновационных технологий позволило значительно снизить ущерб от телевизора для глаз человека, благодаря чему выбор расстояния производится в основном исходя из удобства просмотра видеопоследовательности.

Визуальный комфорт зависит от пиксельной структуры изображения на экране. В этом случае оптимальным расстоянием для просмотра телевизора считается расстояние, на котором зритель не может видеть пиксели (цветные точки) на экране. Примечательно, что если мы говорим о больших телевизионных панелях, при просмотре с близкого расстояния создается иллюзия нахождения в кинотеатре. В таких условиях задействуется периферийное зрение, и у человека появляется возможность максимально полно погрузиться в сюжет программы или фильма.

Однако, если вы смотрите образовательные программы или новостные программы по телевизору с большой диагональю, вам нужно будет сидеть как можно дальше, чтобы не упустить из виду все элементы экрана: заголовки, линию прокрутки, таймеры спортивных матчей и т.д.и т д. В идеале расстояние до монитора и его диагональ должны быть выбраны таким образом, чтобы при просмотре зрителям не приходилось постоянно поворачивать голову и менять положение тела, чтобы следить за происходящим.

Пример решения

Пусть дана некоторая фигура, диагонали которой равны, а ее периметр равен 50. Одна из сторон a = 10. Следует провести идентификацию, а также найти такие параметры:

  • Другие стороны.
  • Значения диагоналей.
  • Площадь.
  • R описанной окружности через площадь и периметр.
  • Выяснить возможность укладки плитки в форме квадрата на такую поверхность.
  • Вычислить значения всех углов между смежными сторонами.

Данная задача является типом сложного класса, поскольку название фигуры не упоминается. Ее следует идентифицировать, а затем применить некоторые формулы для решения. Кроме того, необходимо верно выполнить 5 пункт. Однако не следует углубляться в строительную сферу. Бывают два метода укладки плитки: обычный — форма помещения является прямоугольником или квадратом, и с центра — другая фигура.

У фигуры диагонали равны, значит по третьему признаку она является прямоугольником. К нему можно применять вышеописанные формулы. Для нахождения другой стороны следует составить уравнение 2x + 2 * 10 = 50. Затем нужно перенести все известные значения в правую часть: 2х = 50 — 20. Далее можно найти переменную: х = 30 / 2 = 15 (ед.)

Следует обратить внимание на написание единицы измерения. Если в условии задачи она не указана, то пишется единица измерения, которая заключается в круглые скобки

Достаточно найти только одну сторону, поскольку у прямоугольника существует свойство равенства противоположных сторон.

Значение диагоналей находится по формуле: d = ^(1/2) = (15 2 + 10 2 )^(1/2) = (225 +100)^(1/2) = (325)^(1/2). Площадь можно найти таким образом: S = a * b = 15 * 10 = 150 . Радиус вычисляется так:

  • R = (P 2 — 4Pa + 8a 2 )^(1/2) / 4 = (50 2 — 4 * 50 * 10 + 8 * 10 2 )^(1/2) / 4 = (1300)^(1/2) / 4 (ед.).

  • R = (S 2 + a 4 )^(1/2) / 2a = (150 2 + 100 4 )^(1/2) / (2 * 10) = (1300)^(1/2) / 4 (ед.).

Плитку можно укладывать обыкновенным способом, начиная не с центра, поскольку поверхность является прямоугольником. Все углы между сторонами равны между собой. Их градусная мера по 12 свойству соответствует 90.

Три способа найти длину прямоугольника

Если разделить фигуру на две части диагональю, то можно заметить, что прямоугольник поделится ею на два прямоугольных треугольника. Из этого разделения и вытекают все формулы длины прямоугольника.

Через теорему Пифагора

Если известна длина диагонали ( обозначим ее буквой d) и ширина прямоугольника (примем значение за букву a). Тогда корень квадратный из разности квадратов диагонали и ширины будет равен длине прямоугольника.

Чтобы было понятнее, напишем решение в виде нескольких формул.

Согласно теореме Пифагора квадрат гипотенузы равен сумме квадратов катетов. Гипотенуза это сторона, противоположная прямому углу, две другие стороны зовутся катетами. В нашем случае гипотенуза это диагональ.

Значит: d2=a2+b2 . Из этого выражения выразим квадрат длины (значение «b»):b2=d2-a2

Для того, чтобы определить значение b, нужно взять корень квадратный из обеих сторон получившегося выражения: b=(d2-a2)(-1)

Через площадь

Рассмотрим еще один способ найти длину прямоугольника. Через площадь.Площадь прямоугольника равняется произведению длины на ширину. То есть, используя уже знакомые обозначения S=a*b. Выразим из этой формулы значение длины: b=S/b.

Так же, как и в первом методе, можно поменять местами а и b, чтобы получить формулу для ширины: a=S/b.

Тригонометрическая функция

Один из самых быстрых, но при этом немного сложных способов нахождения длины – воспользоваться тригонометрической функцией.

Если имеется прямоугольный треугольник, то соответственно имеются отношения, известные как синус и косинус.

Выберем угол между длинной и диагональю. Обозначим его α. Тогда sin α катета, противоположного углу α к гипотенузе: Sin α = a/d

Рис. 2. Угол альфа на половине прямоугольника

Значение синуса любого угла можно найти в таблицах Брадиса. Для удобства можно воспользоваться онлайн-версией, которая найдет значение отношения автоматически.

Но в формуле нет значения b, которое соответствует длине, а значит воспользуемся основным тригонометрическим тождеством.Косинус это отношение стороны, прилежащей к углу, к гипотенузе: cos a=b/d

Значит можно найти длину, умножив косинус на гипотенузу: b=cos α*d

Площадь квадрата

Квадрат это тот же прямоугольник, но у которого все стороны равны. Например, на следующем рисунке представлен квадрат со стороной 3 см. Фраза «квадрат со стороной 3 см» означает, что все стороны равны 3 см

Площадь квадрата вычисляется таким же образом, как и площадь прямоугольника — длину умножают на ширину.

Вычислим площадь квадрата со стороной 3 см. Умножим длину 3 см на ширину 3 см

3 × 3 = 9

В данном случае требовалось узнать сколько квадратов со стороной 1 см содержится в исходном квадрате. В исходном квадрате содержится девять квадратов со стороной 1 см. Действительно, так оно и есть. Квадрат со стороной 1 см, входит в исходный квадрат девять раз:

Умножив длину на ширину, мы получили выражение 3 × 3, а это есть произведение двух одинаковых множителей, каждый из которых равен 3. Иными словами выражение 3 × 3 представляет собой вторую степень числа 3. А значит процесс вычисления площади квадрата можно записать в виде степени 32.

Поэтому вторую степень числа называют квадратом числа. При вычислении второй степени числа a, человек тем самым находит площадь квадрата со стороной a. Операцию возведения числа во вторую степень по другому называют возведением в квадрат.

Решение примеров

Несмотря на то что формулы довольно простые, запомнить их простой зубрёжкой сложно. Чтобы материал закрепился, нужно научиться их применять на практике. Если понять принцип нахождения длины, многие из этих выражений можно будет вывести самостоятельно.

Вот некоторые задачи, рассчитанные на учащихся седьмых классов, рекомендуемые к самостоятельной проработке:

  1. Определить длину прямоугольного многоугольника, у которого длина в 4 раза больше ширины. Периметр тела равен 20 см. Для решения задачи нужно принять сторону фигуры за х. Тогда длина будет составлять 4х. Согласно формуле, периметр равен: P = 2AB + 2 BC = 2* x + 2 * 4x. После подстановки значения P и выражения неизвестного, должно получиться следующее равенство: x = 20 / 10 = 2. Отсюда следует, что искомая длина равняется: BC = 4 * x = 4 * 2 = 8 см. Задача решена.
  2. Длина прямоугольной фигуры больше её ширины на 2. Если ширина увеличится на 3 см, а длина на 8, площадь фигуры возрастёт в 3 раза. Найти длину. Чтобы решить задачу, нужно рассуждать следующим образом: пусть x ширина для первого состояния фигуры. Значит, длина этой фигуры будет x + 2. Соответственно, площадь равна: S = x * (x + 2). После трансформации ширина изменилась до значения x + 3, а длина — х + 2 + 8 = х + 10. Площадь новой фигуры равна: S = (х + 3) * (х + 10). После раскрытия скобок получится уравнение: 2 * х2 — 7* х — 30 = 0. После его решения должно получиться, что x = 6 см. Отсюда длина будет равняться: 6 + 2 = 8 см.
  3. Определить длину и ширину прямоугольника ABCD, в который вписаны 3 круга, если радиус каждой описанной окружности равен 5 см. Для решения примера нужно вспомнить, что ширина многоугольника равна двум радиусам круга или его диаметру. Значит, AB = 2 * 5 = 10 см. Соответственно, длина будет составлять 3 диаметра или 6 радиусов: BC = 6 * 5 = 30 см. Ответ найден.

В процессе изучения материала совсем не зазорно пользоваться так называемыми онлайн-калькуляторами. Это сайты, предлагающие своим пользователям рассчитать различные математические величины по исходным данным. Их интересность не только в том, что можно получить готовый ответ, но и в появлении возможности просмотреть подробное решение. Это как раз и позволит устранить пробелы в знании на стадии обучения.

Задача 4. Как найти ширину, зная диагональ

Эта задача уже немного сложнее предыдущих. В ней, кроме свойств прямоугольника, необходимо будет вспомнить формулы прямоугольных треугольников. Допустим, что диагональ АС прямоугольника АВСД равна 54,6 см, а соотношение длина-ширина — 16:9. Необходимо найти ширину фигуры.

Треугольник АВС имеет прямой угол, а значит, является прямоугольным. Диагональ — его гипотенуза, а стороны — катеты.

Из условия:

16АВ = 9ВС, отсюда АВ = 9ВС:16

По теореме Пифагора:

АС2 = АВ2+ВС2

Подставляем цифры:

  • 54,62 = (9ВС:16)2+ВС2
  • 2981,16 = 81ВС2:256+ВС2
  • 2981,16 = 337ВС2:256
  • 337ВС2 = 763176,96
  • ВС2 = 2264,62
  • ВС = 47,59 (см)

Ответ: ширина треугольника равна 47,59 см.

Единицы измерения площади земельных участков

Площади небольших земельных участков удобно измерять в квадратных метрах.

Площади более крупных земельных участков измеряются в арах и гектарах.

Ар (сокращённо: a) — это площадь равная ста квадратным метрам (100 м2). В виду частого распространения такой площади (100 м2) она стала использоваться, как отдельная единица измерения.

Например, если сказано что площадь какого-нибудь поля составляет 3 а, то нужно понимать, что это три квадрата площадью 100 м2 каждый, то есть:

3 а = 100 м2 × 3 = 300 м2

В народе ар часто называют соткой, поскольку ар равен квадрату, площадью 100 м2. Примеры:

1 сотка = 100 м2

2 сотки = 200 м2

10 соток = 1000 м2

Гектар (сокращенно: га) — это площадь, равная 10 000 м2. Например, если сказано что площадь какого-нибудь леса составляет 20 гектаров, то нужно понимать, что это двадцать квадратов площадью 10 000 м2 каждый, то есть:

20 га = 10 000 м2 × 20 = 200 000 м2

Сообщений с 1 по 20 из 30

  • stErvA
  • Младший лейтенант

Репутация : 0

Как найти ширину прямоугольника?

  • Михаил
  • Прапорщик

Репутация : 52

Взять линейку и померить.

3 Ответ от stErvA 29.09.11 17:56

  • stErvA
  • Младший лейтенант

Репутация : 0

Взять линейку и померить.

прости ты разбираешься в этом? :-[

  • Михаил
  • Прапорщик

Репутация : 52

5 Ответ от stErvA 29.09.11 18:00

  • stErvA
  • Младший лейтенант

Репутация : 0

Добавлено спустя 1 минуту 33 секунды:

Вычисли длину прямоугольника, если его ширина 7 дм., а периметр равен 30дм. Помоги :-[

6 Ответ от Михаил 29.09.11 18:01

  • Михаил
  • Прапорщик

Репутация : 52

Добавлено спустя 1 минуту 54 секунды:

Предполагаю, что периметр прямоугольника функционально зависит от его длинны. Более того, осмелюсь предположить, что зависимость эта носит линейный характер.

7 Ответ от stErvA 29.09.11 18:03

  • stErvA
  • Младший лейтенант

Репутация : 0

Вот и я на стенку лезу это уже 3 такая задача. надо 30:7 но не как не получается

Добавлено спустя 2 минуты 40 секунд:

Добавлено спустя 1 минуту 54 секунды:

Предполагаю, что периметр прямоугольника функционально зависит от его длинны. Более того, осмелюсь предположить, что зависимость эта носит линейный характер.

А попроще пожалуйста!Задача 3 класса , а я туплю

8 Ответ от Михаил 29.09.11 18:06

  • Михаил
  • Прапорщик

Репутация : 52

П = 2Ш + 2Д,Где, П — периметр прямоугольника, Ш — ширина прямоугольника, Д — длинна прямоугольника.

Добавлено спустя 1 минуту 6 секунд:

Добавлено спустя 1 минуту 40 секунд:

Добавлено спустя 2 минуты 35 секунд:

9 Ответ от Itshim 29.09.11 18:09

  • Itshim
  • Генерал

Репутация : 15

Ш = (30-14)/2. Тока ширина больше длины получается.

  • stErvA
  • Младший лейтенант

Репутация : 0

Вычисление объема прямоугольного параллелепипеда

Итак, вы знаете, что нужно рассчитать объем, но не забывайте, что обязательно нужно уточнить о какой именно фигуре идет речь: объем куба, или же объемного прямоугольника. Ведь расчет этих, казалось бы, одинаковых фигур, абсолютно разный.

Для начала рассмотрим само понятие объемного прямоугольника. Это параллелепипед. В его основании находится параллелограмм. Так как таковых у него шесть, следовательно все параллелограммы являются гранями параллелепипеда.

Что касается его граней, они могут отличаться, то есть, если прямые боковые грани представляют собой прямоугольники, тогда это прямой параллелепипед, ну, а если все шесть граней являются прямоугольниками, то перед нами прямоугольный параллелепипед.

  1. После прочтения задачи, нужно определить что именно следует найти; длину фигуры, объем или же площадь.
  2. Какая именно часть фигуры рассматривается в задаче — ребро, вершина, грань, сторона, а может быть, вся фигура целиком?

Определив все поставленные задачи, можно переходить непосредственно к вычислениям. Для этого нам понадобятся специальные формулы. Итак, для того чтобы найти объем прямоугольного параллелепипеда перемножается между собой длина, ширина и высота (то есть толщина фигуры). Формула вычисления объема прямоугольного параллелепипеда следующая:

V=a*b*h,

V является объемом параллелепипеда, где a — его длина b — ширина и h — высота соответственно.

Важно! Перед началом перевести все измерения в одну единицу исчисления. Ответ должен получится непременно в кубических единицах

Пример первый

Определим объем бака для спирта, при следующих размерах:

  • длина три метра;
  • ширина два метра пятьдесят сантиметров;
  • высота триста сантиметров.

Для начала обязательно согласовываем единицы измерения и перемножаем их:

3*2.5*3.

Перемножив данные, мы получим ответ в кубических метрах, то есть 3*2.5*3= 22.5 метра в кубе.

Пример второй

Шкаф имеет высоту четыре метра, ширину семьдесят сантиметров и глубину 80 сантиметров.

Зная формулу вычисления можно произвести умножение. Но не стоит торопиться, как и было сказано вначале, следует согласовать между собой единицы, то есть при желании вычислять в сантиметрах перевести все исчисления в сантиметры, ежели в метрах, то в метры. Сделаем оба варианта.

Итак, начнем с сантиметров. Переводим метры в сантиметры:

V = 400 * 70 * 80;

V = 2240000 сантиметров в кубе.

Теперь метры:

V = 4* 0.7 * 0.8;

V = 2.24 метра в кубе.

Исходя из вышеперечисленных манипуляции, очевидно, что работа с кубическими метрами более легка и понятна.

Пример третий

Дана комната, объем которой должен быть вычислен. Длина этой комнаты равна пяти метрам, ширина — трем, а высота потолка 2,5. Опять используем известную нам формулу:

V = a * b * h;

где, а длина комната и равна 5, b- ширина и равна 3 и h высота, которая равна 2.5

Так как все единицы даны в метрах, можно сразу приступать к вычислениям. Перемножая между собой a, b и h:

V = 5 * 3 * 2.5;

V = 37.5 метра в кубе.

Итак, в качестве заключения, можно сказать, что зная основные математические правила для вычисления объема или же площади фигур, а также правильно определив фигуры (плоские или же объемные), умея переводить сантиметры в метры и наоборот — можно облегчить изучение геометрии вашему ребенку, что не может не сделать этот процесс более интересным и привлекательным, ведь все накопленные знания в школе, могут быть успешно использованы в самой обычной бытовой жизни в будущем.

Вычисление диагонали квадрата по известной стороне

Самым простым способом является вычисление диагонали
, если известна сторона квадрата. Здесь действует широко известная теорема Пифагора для прямоугольных треугольников. Запишем эту формулу: c^2 = a^2+b^2.

Отметим, что в нашем случае диагональ квадрата есть гипотенуза треугольника с равными катетами. Перепишем формулу исходя из наших условий: d^2 = a^2+a^2. Преобразуем, получим: d^2 = 2*a^2. Следующим шагом извлечём квадратный корень, получится: d = rad2*a
. Это и есть наша конечная формула.

Рассмотрим вычисление на примере. Пусть a = 64. Подставим наше значение в формулу. Получим d = 64*rad2. Это и есть ответ.

Формулы нахождения длины

Существует несколько способов, позволяющих найти длину. Как лучше это сделать и какой алгоритм использовать, зависит от известных данных и личных предпочтений решающего. Как показывает практика, найти величину достаточно просто, если есть значение ширины и ещё одного из параметров многоугольника.

Найти длину (BC) прямоугольника можно следующим образом:

  1. Зная площадь и ширину. Так как первая величина находится из произведения сторон S = AB * BC, длина будет равняться отношению размера замкнутой плоскости к ширине: BC = S/AB.
  2. По известному периметру и примыкающей стороне. Периметр прямоугольника равен сумме всех его граней: P = AB + BC + CD + AD. Так как противолежащие стороны равны, равенство можно переписать так: P = 2AB + 2BC. Отсюда следует, что BC = (P — 2AB)/2.
  3. Если известна диагональ и ширина. Отрезок, соединяющий противолежащие вершины, делит многоугольник на 2 прямоугольных треугольника, поэтому можно воспользоваться теоремой Пифагора: a = √ (‎ b2 + c2), где: a — гипотенуза (диагональ); b, с — катеты (ширина и длина). Отсюда: b = √ (c2 — a2) = ВС = √ CA2 — AB 2.
  4. Используя формулу радиуса описанной окружности: R = √ (AB2 — BC2)/2. Для квадрата или ромба формула выглядит проще: R = a / √2 = d / 2, где d — диаметр описанного круга.

Диагональ прямоугольника можно вычислить через радиус описанной окружности d = 2 R или используя синус угла: d = a / sin (a), то есть найти из отношения прилегающей функции к ширине. Исходя из этого, можно вывести ещё одну формулу для поиска длины: BC = CA * cos (a).

Площадь фигуры можно найти не только как произведение сторон, но и зная размер диагонали с величиной синуса острого угла: S = d2 * sin (b) / 2, где b — угол между диагоналями. Приведённых формул будет достаточно для нахождения длины прямоугольника

При этом следует отметить важное свойство фигуры — высота многоугольника является шириной. Это свойство необходимо знать, так как в примерах нередко даётся размер не стороны, а именно высоты.

Алгоритм решение задач с прямой и обратной пропорциональной зависимостью

Алгоритм решения задач на пропорциональную зависимость состоит из нескольких основных пунктов:

  1. Обозначить буквой значение неизвестной величины (чаще всего для этого выбирают латинскую букву Х)
  2. Проанализировать задачу и кратко записать ее условия (краткую запись можно делать в виде таблицы или изображать в виде логической схемы)
  3. Установить зависимость между величинами
  4. В краткой записи задачи обозначить стрелками пропорциональную зависимость

— Стрелки, которые направлены в одну сторону, обозначают прямую пропорциональную зависимость величин

— Стрелки, которые направлены в разные стороны, обозначают обратную пропорциональную зависимость величин.

5. Записать пропорцию, учитывая характер пропорциональности величин

6. Составить уравнение

7. Найти неизвестный член уравнения (искомую величину)

8. Записать ответ задачи

Важно помнить, что при составлении краткой записи задачи величины с одинаковыми единицами измерения записывают друг под другом. Если между величинами прямая пропорциональная зависимость, то пропорция составляется точно в соответствии с краткой записью задачи

Если между величинами прямая пропорциональная зависимость, то пропорция составляется точно в соответствии с краткой записью задачи.

Если между величинами обратная пропорциональная зависимость, то при составлении пропорции одноименные величины меняются местами в одном любом из столбцов таблицы (логической схемы) краткой записи задачи.

Другими словами, при прямо пропорциональной зависимости отношение значений одной величины равно отношению соответствующих значений другой величины.

При обратно пропорциональной зависимости отношение значений одной величины будет равно обратному отношению соответствующих значений другой величины.

Пройти тест и получить оценку можно после входа или регистрации

В этой статье мы поговорим о длине прямоугольника. Как определить, какая из сторон является длиной и зачем их разделять. Разберем три способа нахождения длины прямоугольника и решим небольшую задачу.

Заключение

Таким образом, мы рассмотрели в статье пять принципиально различных методов вычисления диагонали квадрата. Если, на первый взгляд, задача казалась сложной, то после проведённых нами рассуждений стало очевидно, что особых проблем здесь нет. Сведём все полученные нами формулы в одну таблицу.

  1. d = rad2*a;
  2. d = rad2*radS;
  3. d = rad2*P/4;
  4. d = 2*R;
  5. d = rad2*2*r.

Хочется ещё отметить
, что с помощью первой из наших формул очень легко построить отрезок, равный корню квадратному из двух. Для этого строим квадрат со стороной единица, его диагональ и будет равняться искомому отрезку.

Если на полученной диагонали мы построим прямоугольник, используя её как длину, а ширину возьмём равной единице, то получим отрезок равный ещё одному иррациональному числу корень квадратный из трёх.

Гость форума
От: admin

Эта тема закрыта для публикации ответов.