Равнобедренный треугольник. онлайн калькулятор

Алан-э-Дейл       15.04.2022 г.

Содержание

Высота равнобедренного треугольника

Итак, провели высоту. Что же получилось?

Из одного равнобедренного треугольника получилось два прямоугольных.

Это уже хорошо, но так получится в любом, даже самом «кособедренном» треугольнике.

Смотри:

Тоже два прямоугольных….

Чем же отличается картинка для равнобедренного треугольника? Смотри ещё раз:

Видишь, два прямоугольных треугольника (Δ??? и Δ???) – одинаковые!

Или, как математики любят говорить? Равные!

Ну, во-первых, конечно, этим странным математикам мало просто видеть – нужно непременно доказывать. А то вдруг эти треугольники чуть-чуть разные, а мы будем считать их одинаковыми.

Но не переживай: в данном случае доказывать почти так же просто, как и видеть.

Начнём?

Свойства прямоугольного треугольника:

1. В прямоугольном треугольнике сумма двух острых углов равна 90°.

2. В прямоугольном треугольнике катет, лежащий против угла в 30° , равен половине гипотенузы.

И наоборот, если в прямоугольном треугольнике катет вдвое меньше гипотенузы, то напротив него лежит угол в 30˚.

Рис. 7. Прямоугольный треугольник с острым углом 30˚

b = c / 2

3. Теорема Пифагора:

Сумма квадратов катетов равна квадрату гипотенузы.

c​2​​ = a​2​​ + b​2​​ ,

где a, b – катеты, c – гипотенуза.

Рис. 8. Прямоугольный треугольник

4. В прямоугольном треугольнике центр описанной окружности – есть середина гипотенузы.

И соответственно радиус описанной окружности (R) равен половине гипотенузы.

 ,

где c – гипотенуза.

                         Рис. 9. Прямоугольный треугольник и описанная окружность         

5. В прямоугольном треугольнике медиана, падающая на гипотенузу, равна половине гипотенузы.

 Рис. 10. Прямоугольный треугольник и медиана, падающая на гипотенузу

АМ – медиана прямоугольного треугольника, падающая на гипотенузу, АМ = ВМ = МС, АМ = ВС/2

6. В прямоугольном треугольнике высота, проведенная из вершины прямого угла, разбивает его на два треугольника подобные исходному.

 Рис. 11. Прямоугольный треугольник и высота, проведенная из вершины прямого угла

АВ/ВС = АН/АС = ВН/АВ

Площадь равнобедренного треугольника через стороны

Найти S планиметрического тела с двумя одинаковыми чертами, зная их параметры, возможно. 

Для этого необходима теорема Пифагора, формулы которой видны на картинке,

и формула для отыскания S через биссектрису S = ½ * b * h.

После проведения медианы к середине 3-его отрезка, в равнобедренном треугольнике образуются 2 единообразных плоских тела с h между 2-мя катетами. 

Таким образом, используя свойство сторон прямоугольного треугольника, выводим формулу, которая показана на картинке:

При высчитывание S равностороннего треугольника это выражение примет другой вид. Сравнить формулы нахождения площади равностороннего и равнобедренного треугольников можно, взглянув на картинку:

Задача №2.

У остроугольного равнобедренного треугольника даны габариты боковины b = 3 см и базиса a = 2 см. Надлежит найти его S:

Ответ: 8 см2.

Радиус вписанной окружности в равнобедренный треугольник

      Обозначения в формулах, можно посмотреть на рисунке выше.
Радиус вписанной окружности для равнобедренного треугольника можно найти, исходя из величин основания и каждой стороны. (Формула 1)
Радиус вписанной окружности для равнобедренного треугольника можно определить,исходя из величин основания  и высоты, проведенной к этому основанию (Формула 2)
Радиус вписанной в равнобедренный треугольник окружности можно также вычислить через длину боковой стороны и высоту, проведенную к основанию треугольника (Формула 3)
Знание величины угла между боковыми сторонами и длины основания также позволяет определить радиус вписанной окружности (Формула 4)
Аналогичная формула (5) позволяет определить радиус вписанной окружности через боковые стороны и угол между ними

Формулы прямоугольного треугольника:

Пусть a и b – длины катетов прямоугольного треугольника, с – длина гипотенузы прямоугольного треугольника, h – высота прямоугольного треугольника, проведенная к гипотенузе (АН), R – радиус описанной окружности, r – радиус вписанной окружности (см. Рис. 9, 11, 12).

Формулы сторон прямоугольного треугольника (a, b, c) по теореме Пифагора:

c​2​​ = a​2​​ + b​2​​ ,

a​2​​ = c​2​​ – b​2​​ ,

b​2​​ = c​2 – a​2 ​​.

Формула радиуса вписанной окружности (r):

 .

Рис. 12. Прямоугольный треугольник и вписанная окружность

Формула радиуса описанной окружности (R): 

.

Формулы площади (S) прямоугольного треугольника: 

 .

Формулы высоты (h)прямоугольного треугольника:

.

Примечание:  Фото https://www.pexels.com, https://pixabay.com

Найти что-нибудь еще?

карта сайта

Коэффициент востребованности
18 641

Признаки равенства прямоугольных треугольников:

Признаки равенства прямоугольных треугольников основаны и вытекают из общих признаков равенства треугольников.

1. Равенство по двум катетам.

Если катеты одного прямоугольного треугольника соответственно равны катетам другого прямоугольного треугольника, то такие треугольники равны.

Рис. 2. Равенство прямоугольных треугольников по двум катетам

АВ = А1В1, АС = А1С1

2. Равенство по катету и прилежащему острому углу.

Если катет и прилежащий к нему острый угол одного прямоугольного треугольника соответственно равны катету и прилежащему к нему острому углу другого прямоугольного треугольника, то такие треугольники равны.

Рис. 3. Равенство прямоугольных треугольников по катету и прилежащему углу

АВ = А1В1, ∠АВС = ∠А1В1С1

3. Равенство по гипотенузе и острому углу.

Если гипотенуза и острый угол одного прямоугольного треугольника соответственно равны гипотенузе и острому углу другого прямоугольного треугольника, то такие треугольники равны.

Рис. 4. Равенство прямоугольных треугольников по гипотенузе и острому углу

ВС = В1С1, ∠АВС = ∠А1В1С1

4. Равенство по гипотенузе и катету.

Если гипотенуза и катет одного прямоугольного треугольника соответственно равны гипотенузе и катету другого прямоугольного треугольника, то такие треугольники равны.

Рис. 5. Равенство прямоугольных треугольников по гипотенузе и катету

ВС = В1С1, АС = А1С1 

5. Равенство по катету и противолежащему острому углу.

Если катет и противолежащий острый угол одного прямоугольного треугольника соответственно равны катету и острому углу другого прямоугольного треугольника, то такие треугольники равны.

Рис. 6. Равенство прямоугольных треугольников по катету и противолежащему острому углу

АС = А1С1, ∠АВС = ∠А1В1С1

Периметр треугольника, онлайн расчет

Как найти периметр треугольника по длине его сторон, формула периметра треугольника.

Периметр треугольника, онлайн расчет

c – гипотенуза

a,b – катеты, образующие прямой угол

Некоторые свойства прямоугольных треугольников

Свойство 1. Сумма двух острых углов прямоугольного треугольника равна 90°.

Действительно. Поскольку сумма углов треугольника равна 180°, а прямой угол равен 90°, то сумма остальных углов равен 90°.

Свойство 2. Если катет прямоугольного треугольника лежит напротив угла в 30°, то он равен половине гипотенузы.

Доказательство. Рассмотрим прямоугольный треугольник ACB, у которого угол C прямой, а угол ∠ABC=30°. Приложим к этому треугольнику равному ему прямоугольный треугольник как показано на Рис.2.

Рассмотрим треугольник ADB. Так как ∠A=∠D=∠ABD=60°, то треугольник ABD равносторонний. Следовательно AB=AD=BD. Тогда . Конец доказательства.

Свойство 3. Если катет прямоугольного треугольника равен половине гипотенузы, то угол, лежащий против данного катета равен 30°.

Доказательство. Пусть у прямоугольного треугольника катет AC равен половине гипотенузы AB. Аналогично вышеизложенному приложим к этому треугольнику равному ему прямоугольный треугольник BCD(Рис.2). Получим равносторонний треугольник, где AB=AD=BD. Тогда ∠A=∠D=∠ABD=60°. Но ∠ABD=2∠ABС. Следовательно . Конец доказательства.

Помощь в решении задач по геометрии, учебник онлайн (все калькуляторы по геометрии).
Калькуляторы по геометрии

Примеры решения задач

ПРИМЕР 1

Задание В прямоугольном треугольнике с , гипотенузой см и катетом см найти и .
Решение Поскольку в прямоугольном треугольнике известны длины гипотенузы и катета, то можно найти

Отсюда следует, что . Тогда второй острый угол треугольника

Ответ .

ПРИМЕР 2

Задание В прямоугольном треугольнике см. Найти .
Решение Поскольку треугольник – прямоугольный, то

Так углы A и С равны, то – равнобедренный с боковыми сторонами см. Тогда гипотенузу можно найти с помощью теоремы Пифагора:

см

Ответ см

Стороны прямоугольного треугольника

Признаки прямоугольного треугольника

Признаки равенства треугольников

Высота в прямоугольном треугольнике

Остроугольный треугольник

Треугольник. Виды, свойства, решение треугольников.
Свойства треугольника.

Признаки равнобедренного треугольника

Вот несколько нехитрых правил, по которым легко определить, что перед вами не что иное, как его величество равнобедренный треугольник.

  1. Если у треугольника два угла равны, то этот треугольник — равнобедренный.
  2. Если высота треугольника совпадает с его медианой, то такой треугольник — равнобедренный.
  3. Если высота треугольника совпадает с его биссектрисой, то такой треугольник — равнобедренный.
  4. Если биссектриса треугольника совпадает с его медианой, то такой треугольник снова равнобедренный!
  5. Если два угла треугольника равны, такой треугольник является равнобедренным.
Свойства углов равнобедренного треугольника
  • В равнобедренном треугольнике углы при основании равны.
  • Углы при основании в равнобедренном треугольнике — всегда острые.
  • Сумма углов равнобедренного треугольника равна 180 градусам.

Теорема о средней линии треугольника

Теорема о средней линии треугольника звучит так:

Средняя линия треугольника параллельна основанию и равна его половине. А так выглядит формула нахождения средней линии треугольника:

Докажем теорему:

  1. По условию нам дано, что MA = MB, NA = NC

  2. Рассмотрим два образовавшихся треугольника ΔAMN и ΔABC.

    (по второму признаку подобия треугольников).

  3. Так как △AMN ~ △ABC, то Следовательно, ВС = 2МN. Значит, доказано, что средняя линия равна половине основания.

  4. Так как △AMN ~ △ABC, то ∠1 = ∠2 . Так как ∠1 и ∠2 — соответственные углы, то по признаку параллельности прямых MN || BC.

    Параллельность средней линии и соответствующего ей основания доказана.

Теорема доказана.

Пример 1. В треугольнике ΔABC AB = 8, BC = 7, CA = 5, точки M, K, N — середины сторон AB, BC, CA соответственно. Найти периметр ΔMNK.

Соединим середины сторон треугольника ΔABC и получим его средние линии, которые образуют треугольник ΔMNK. Найдем их длины по теореме о средней линии:

Ответ: периметр треугольника ΔMNK равен 10.

Пример 2. В прямоугольном треугольнике АВС есть две средние линии: MN и NP, равные 3 и 4 соответственно. Найти площадь большого прямоугольного треугольника.

Решение:

  1. Площадь треугольника равна половине произведения основания на высоту. Так как треугольник прямоугольный, то его площадь найдем как половину произведения катетов:

    S = ½ × AC × BC

  2. Так как MN — средняя линия, то по теореме о средней линии она равна половине катета AC:

    MN = ½ × AC

    Значит, AC = 2MN = 2 × 3 = 6.

  3. Так как NP — средняя линия, то по теореме о средней линии она равна половине катета BC:

    NP = ½ × BC

    Значит, BC = 2NP = 2 × 4 = 8.

  4. Тогда найдем площадь большого треугольника, используя формулу, указанную выше:

    S = ½ × 6 × 8 = ½ × 48 = 24.

Ответ: площадь большого прямоугольного треугольника равна 24.

Как найти гипотенузу?

Как найти гипотенузу, зная катеты?

Если известны оба катета (две другие стороны прямоугольного треугольника), можно применить Теорему Пифагора.

Теорема Пифагора — в прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов. Формула: c² = a² + b² (при c — гипотенуза, a и b — катеты).

Например:

Один катет равен 3 см, другой — 4 см. Таким образом, а = 3, b = 4, подставляем в формулу:

c² = 3² + 4² <=> c² = 9 + 16 <=> c² = 25 <=> c = √25 <=> c = 5.

Ответ: длина гипотенузы 5 см (или x = 5).

Как найти катет в прямоугольном треугольнике

По той же формуле можно найти и длину одного неизвестного катета, нужно только немного её изменить:

Начальная формула: c² = a² + b² (при c — гипотенуза, a и b — катеты), и найти катет можно по этой:

(c — гипотенуза, a и b — катеты)

Например: Один катет равен 3 см, а гипотенуза — 5 см. Нужно узнать длину второго катета.

Применяем формулу b = √c² — a² ⇔

b = √5² — 3² ⇔ b = √25 — 9 ⇔ b = √16 ⇔ b = 4.

Как найти гипотенузу, зная катет и угол?

Если есть противолежащий катет — теорема синусов

Если в условии задачи дан угол и противолежащий катет, то ищем гипотенузу по Теореме синусов: стороны треугольника пропорциональны синусам противолежащих углов.

Примечание: гипотенуза есть только в прямоугольном треугольнике, однако теорему синусов можно применять к любым треугольникам (не только к прямоугольным).

Формула:

Например:

Известна одна сторона треугольника ?? = √2 и ∠β = 45º.

∠α = 90º (т.к. мы ищем гипотенузу, то второй угол в треугольнике прямой, значит имеет 90º).

Так как во всех треугольниках сумма всех углов равна 180º, то можем узнать оставшийся ∠c.

Значит: ∠c = 180º — (90º + 45º) = 45º.

Подставляем в формулу (a/sinα = b/sinβ = c/sinγ) известные:

BC/sin90º = AC/sin45º = AB/sin45º

В таблице вы найдёте значения для синуса:

sin 45º √2/2
sin 60º √3/2
sin 90º 1

В условии задачи нам дано: ?? = √2, значит:

BC/sin90º = √2/sin45º = AB/sin45º

Подставляем значения синуса из таблицы:

BC/1 = √2/(√2/2) = AB/(√2/2) (забудем на время про катет AB) ⇔

BC = √2/(√2/2) ⇔ BC = 2 (гипотенуза равна 2)

Если хотите вычислить катет, уже зная другой катет и гипотенузу:

AB/(√2/2) = 2 ⇔ AB = √2

Ответ: гипотенуза BC равна 2 см, а катет AB √2 см.

Если есть прилежащий катет — по косинусу

Если в условии задачи дан угол и прилежащий катет, то ищем гипотенузу по косинусу (в прямоугольном треугольнике, косинус острого угла (cos) — это отношение прилежащего катета (b) к гипотенузе(c), таким образом cos a = b/c, из этого получается c = b / cos α).

Т.е. гипотенуза (c) = прилежащий катет (b) / косинус угла или c = b / cos α.

Например:

Известна одна сторона треугольника AB = 1 и ∠β = 45º. Нужно вычислить гипотенузу (BC).

Помним, что гипотенуза (c) = прилежащий катет (b) / косинус угла или c = b / cos α. Т.е.: BC = AB / cosβ ⇔ BC = 1/ cos 45º.

Смотрим в таблице, чему равен cos 45º.

BC = 1/ (√2/2) = √2

Ответ: гипотенуза BC равна √2 см.

Как найти гипотенузу равнобедренного треугольника

В равнобедренном треугольнике есть гипотенуза только в том случае, если он одновременно и прямоугольный, т.к. гипотенуза есть только в прямоугольных треугольниках (и его основание будет гипотенузой).

Чтобы найти такую гипотенузу, нужно любой из двух одинаковых катетов возвести в квадрат, умножить на 2 и посчитать квадратный корень: b = √2a² (где b — гипотенуза, а — катет). Это следствие из теоремы Пифагора.

Например:

Катет равнобедренного треугольника равен 7см. Нужно найти гипотенузу.

Формула b = √2a². Подставляем:

b = √2*7² = √2*49 ≈ √98 ≈ 9.899

Если забудете эту формулу, можно использовать уже знакомую формулу Пифагора для гипотенузы (c² = a² + b²):

c² = a² + b²

c² = 7² + 7²

c² = 49 + 49

c² = 98

c = √98

c ≈ 9.899

Ответ: гипотенуза равна 9.899.

Узнайте больше про Теорему Пифагора, Теорему косинусов, а также, что такое Тангенс и Аксиома.

Основные понятия

Треугольник — это геометрическая фигура, которая получилось из трех отрезков. Их соединили тремя точками, не лежащими на одной прямой. Отрезки принято называть сторонами, а точки — вершинами.

Площадь — это численная характеристика, которая дает нам информацию о размере плоскости, ограниченной замкнутой геометрической фигурой.

Если параметры переданы в разных единицах длины, мы не сможем узнать какая площадь треугольника получится. Поэтому для правильного решения необходимо перевести все данные к одной единице измерения.

Популярные единицы измерения

  • квадратный миллиметр (мм2);
  • квадратный сантиметр (см2);
  • квадратный дециметр (дм2);
  • квадратный метр (м2);
  • квадратный километр (км2);
  • гектар (га).

Равнобедренный треугольник: свойства, признаки и формулы

  1. Свойства равнобедренного треугольника.
  2. Признаки равнобедренного треугольника.
  3. Формулы равнобедренного треугольника:
    • формулы длины стороны;
    • формулы длины равных сторон;
    • формулы высоты, медианы, биссектрисы равнобедренного треугольника.

Равнобедренным называется треугольник, у которого две стороны равны. Эти стороны называются боковыми, а третья сторона — основанием.

АВ = ВС — боковые стороны

АС — основание

Свойства равнобедренного треугольника

Свойства равнобедренного треугольника выражаются через 5 теорем:

Теорема 1. В равнобедренном треугольнике углы при основании равны.

Доказательство теоремы:

Рассмотрим равнобедренный Δ ABC с основанием АС.

Боковые стороны равны АВ = ВС,

Следовательно углы при основании ∠ BАC = ∠ BСA.

  • Теорема 2. В равнобедренном треугольнике биссектриса, проведенная к основанию, является медианой и высотой.
  • Теорема 3. В равнобедренном треугольнике медиана, проведенная к основанию, является биссектрисой и высотой.
  • Теорема 4. В равнобедренном треугольнике высота, проведенная к основанию, является биссектрисой и медианой.

Доказательство теоремы:

  • Дан Δ ABC.
  • Из точки В проведем высоту BD.
  • Треугольник разделился на Δ ABD и ΔCBD. Эти треугольники равны, т.к. гипотенузы и общий катет у них равны (теорема Пифагора).
  • Прямые АС и BD называются перпендикуляром.
  • В Δ ABD и Δ BCD∠ BАD = ∠ BСD (из Теоремы 1).
  • АВ = ВС — боковые стороны равны.
  • Стороны АD = СD, т.к. точка D отрезок делит пополам.
  • Следовательно Δ ABD = ΔBCD.
  • Биссектриса, высота и медиана это один отрезок – BD

Вывод:

  1. Высота равнобедренного треугольника, проведенная к основанию, является медианой и биссектрисой.
  2. Медиана равнобедренного треугольника, проведенная к основанию, является высотой и биссектрисой.
  3. Биссектриса равнобедренного треугольника, проведенная к основанию, является медианой и высотой.

Запомни! При решении таких задач опусти высоту на основание равнобедренного треугольника. Чтобы разделить его на два равных прямоугольных треугольника.

Теорема 5. Если три стороны одного треугольника равны трем сторонам другого треугольника, то такие треугольники равны.

Доказательство теоремы:

Дано два Δ ABC и Δ A1B1C1. Стороны AB = A1B1; BC = B1C1; AC = A1C1.

Доказательство от противного.

  • Пусть треугольники не равны (а то треугольники были равны по первому признаку).
  • Пусть Δ A1B1C2 = Δ ABC, у которого вершина C2 лежит в одной полуплоскости с вершиной C1 относительно прямой A1B1. По предположению вершины C1 и C2 не совпадают. Пусть D – середина отрезка C1C2. Δ A1C1C2 и Δ B1C1C2 – равнобедренные с общим основанием C1C2. Поэтому их медианы A1D и B1D являются высотами. Значит, прямые A1D и B1D перпендикулярны прямой C1C2. A1D и B1D имеют разные точки A1 и B1, следовательно, не совпадают. Но через точку D прямой C1C2 можно провести только одну перпендикулярную ей прямую.
  • Отсюда пришли к противоречию и теорему доказали.

Признаки равнобедренного треугольника

  1. Если в треугольнике два угла равны.
  2. Сумма углов треугольника 180°.
  3. Если в треугольнике биссектриса является медианой или высотой.
  4. Если в треугольнике медиана является биссектрисой или высотой.
  5. Если в треугольнике высота является медианой или биссектрисой.

Формулы сторон равнобедренного треугольника

  • b — сторона (основание)
  • а — равные стороны
  • a — углы при основании
  • b — угол образованный равными сторонами

Формулы длины стороны (основания — b):

  • b = 2a \sin( \beta /2)= a \sqrt { 2-2 \cos \beta }
  • b = 2a \cos \alpha

Формулы длины равных сторон — (а):

  • a=\frac { b } { 2 \sin(\beta /2) } = \frac { b } { \sqrt { 2-2 \cos \beta } }
  • a=\frac { b } { 2 \cos\alpha }

Формулы высоты, медианы, биссектрисы равнобедренного треугольника

  • L — высота=биссектриса=медиана
  • b — сторона (основание)
  • а — равные стороны
  • a — углы при основании
  • b — угол образованный равными сторонами

Формулы высоты, биссектрисы и медианы, через сторону и угол, (L):

  • L = a sina
  • L = \frac { b } { 2 } *\tg\alpha
  • L = a \sqrt { (1 + \cos \beta)/2 } =a \cos (\beta)/2)

Формула высоты, биссектрисы и медианы, через стороны, (L):

L = \sqrt { a { 2 } -b { 2 } /4 }

Площадь равнобедренного треугольника

  • b — сторона (основание)
  • а — равные стороны
  • h — высота

Формула площади треугольника через высоту h и основание b, (S):

S=\frac { 1 } { 2 } *bh

Смотри также:

Калькулятор периметра прямоугольного треугольника

Прямоугольный треугольник — простая, но крайне важная для математики фигура. Знание о его свойствах и умение оперировать основными параметрами прямоугольного треугольника позволит вам справиться как со школьными, так и с реальными задачами.

Геометрия прямоугольного треугольника

Геометрически треугольник — это три точки, не лежащие на одной прямой, которые соединены между собой отрезками. Прямоугольный треугольник — фигура, две стороны которой образуют прямой угол.

Эти стороны называются катетами треугольника, а третья, самая длинная сторона, носит название гипотенузы.

Соотношение квадратов катетов и гипотенузы устанавливает теорема Пифагора — одна из фундаментальных теорем евклидовой геометрии.

Соотношения гипотенузы и катетов также положили основу для целого раздела математики — тригонометрии.

Изначально синусы и косинусы определялись как функции углов прямоугольного треугольника, но в современном значении тригонометрические функции расширены на всю числовую ось.

Сегодня тригонометрия используется во многих областях человеческой деятельности: от астрономии и океанографии до анализа финансовых рынков и разработки компьютерных игр.

Прямоугольный треугольник в реальности

Непосредственно прямоугольный треугольник встречается в реальности на каждом углу, как в прямом, так и в переносном смысле.

Форму прямоугольного треугольника имеют грани тетраэдров и призм, которые в реальности превращаются в детали машин, керамическую плитку или скаты крыш.

Угольник — чертежный инструмент, с которым человек впервые встречается на уроке геометрии, имеет форму именно прямоугольного треугольника и используется в проектировании, строительстве и столярном деле.

Периметр треугольника

Периметр — это численная оценка длин всех сторон плоской геометрической фигуры. Периметр n-угольника находится как сумма длин n сторон. Для определения периметра прямоугольного треугольника используется простая формула:

  • P = a + b + c,
  • a и b – катеты, c – гипотенуза.
  • Вычисляя периметр треугольника вручную, вам пришлось бы измерять все три стороны, проводить дополнительные тригонометрические операции или вычисления по теореме Пифагора. Используя онлайн-калькулятор вам достаточно узнать следующие пары переменных:
  • два катета;
  • катет и угол;
  • гипотенуза и угол.

В школьных задачах или на практике вам будут заданы исходные данные, поэтому калькулятор позволяет найти периметр, зная разные пары параметров. Кроме того, инструмент автоматически рассчитывает все остальные атрибуты прямоугольного треугольника, то есть длины всех сторон и величины всех углов. Рассмотрим пару примеров.

Школьная задача

Пусть в школьной задаче вам задан прямоугольный треугольник с длиной катета равным 5 см и прилежащим углом, величина которого составляет 60 градусов. Требуется найти периметр геометрической фигуры.

Онлайн-калькулятор сопровождается рисунком, на котором изображены стороны и углы прямоугольного треугольника. Мы видим, что если катет a = 5 см, то его прилежащий угол — это угол бета.

Это важный момент, так как если вы используете для расчетов угол альфа, то результат будет неверным. Вбиваем эти данные в форму и получаем ответ в виде:

Помимо непосредственно периметра, наша программа также определила величину противолежащего угла, а также длину второго катета и гипотенузы.

Обустройство клумбы

Допустим, вы хотите сделать ограду для клумбы, которая имеет форму прямоугольного треугольника. Для этого вам необходимо узнать периметр фигуры. Конечно, в реальности вы можете просто замерить все три стороны, но легко упростить себе задачу и измерить только два катета. Пусть они имеют длину 8 и 15 метров. Вбиваем эти данные в форму калькулятора и получаем ответ:

P = 40

Итак, вам понадобится закупить материалы для обустройства 40 метров ограды. Наш калькулятор также подсчитал длину гипотенузы — 17 метров. Числа 8, 15 и 17 составляют пифагорову тройку — натуральные числа, которые удовлетворяют условиям теоремы Пифагора.

Заключение

Прямоугольные треугольники получили широкое распространение в повседневности, поэтому определение площади или периметра геометрической фигуры наверняка пригодится вам при решении школьных задач или бытовых вопросов.

Доказательство равенства треугольников

Посмотри внимательно, у нас есть:

  • \( \displaystyle \underbrace{AB}_{гипотенуза \ в\ \Delta ABH}=\underbrace{BC}_{гипотенуза\ в\ \Delta СBH}\)
  • \( \displaystyle BH\text{ }=\text{ }BH\) (ещё говорят, \( \displaystyle BH\)— общая)

И, значит, \( \displaystyle AH\text{ }=\text{ }CH\)!

Почему? 

Да мы просто найдём и \( \displaystyle AH\), и \( \displaystyle CH\) из теоремы Пифагора (помня ещё при этом, что \( \displaystyle AB=BC\))\( \displaystyle AH=\sqrt{A{{B}^{2}}-B{{H}^{2}}}\)\( \displaystyle CH=\sqrt{B{{C}^{2}}-B{{H}^{2}}}\)

Удостоверились? Ну вот, теперь у нас\( \displaystyle \begin{array}{l}AB=BC\\BH=BH\\AH=CH\end{array}\)А уж по трём сторонам – самый легкий (третий) признак равенства треугольников.

Ну вот, наш равнобедренный треугольник разделился на два одинаковых прямоугольных.

Отметим на картинке все одинаковые элементы (углы и стороны).

Видишь, как интересно? Получилось, что:

  • В равнобедренном треугольнике углы при основании равны: \( \displaystyle \angle A=\angle C\);
  • Высота, проведенная к основанию \( \displaystyle (ВH)\), совпадает с медианой и биссектрисой
  • \( \displaystyle AH=CH\)
  • \( \displaystyle \angle 1=\angle 2\).

Вспоминаем тут, что медиана – линия, проведённая из вершины, которая делит сторону пополам, а биссектриса – делит угол.)

Ну вот, здесь мы обсудили, что хорошего можно увидеть, если дан равнобедренный треугольник.

И теперь возникает другой вопрос: а как узнать, равнобедренный ли треугольник?

Свойства равнобедренного треугольника

  • Углы, противолежащие равным сторонам равнобедренного треугольника, равны между собой.
  • Биссектрисы, медианы и высоты, проведённые из углов, противолежащих равным сторонам треугольника, равны между собой.
  • Биссектриса, медиана и высота, проведенные к основанию, совпадают между собой.
  • Центры вписанной и описанной окружностей лежат на высоте, биссектрисе и медиане (они совпадают) проведенных к основанию.
  • Углы, противолежащие равным сторонам равнобедренного треугольника, всегда острые.

Стороны в равнобедренном треугольнике могут быть вычислены с помощью формул, выражающих их длину через другие стороны и углы, величина которых известна.

Боковая сторона равнобедренного треугольника равна частному от деления основания на двойной косинус угла при основании (Формула 1). Данное тождество может быть получено путем несложных преобразований из теоремы косинусов.

Основание равнобедренного треугольника равно произведению боковой стороны на квадратный корень из удвоенной разности единицы и косинуса угла при вершине (Формула 2)

Основание равнобедренного треугольника равно удвоенному произведению боковой стороны на синус половины угла при вершине. (Формула 3)

Основание равнобедренного треугольника равно удвоенному произведению боковой стороны на косинус угла при его основании (Формула 4).

Гость форума
От: admin

Эта тема закрыта для публикации ответов.